Search results for "Predator-Prey interaction"

showing 10 items of 30 documents

Olfactory cues and the value of information: voles interpret cues based on recent predator encounters

2018

Abstract Prey strategically respond to the risk of predation by varying their behavior while balancing the tradeoffs of food and safety. We present here an experiment that tests the way the same indirect cues of predation risk are interpreted by bank voles, Myodes glareolus, as the game changes through exposure to a caged weasel. Using optimal patch use, we asked wild-caught voles to rank the risk they perceived. We measured their response to olfactory cues in the form of weasel bedding, a sham control in the form of rabbit bedding, and an odor-free control. We repeated the interviews in a chronological order to test the change in response, i.e., the changes in the value of the information.…

0106 biological sciences0301 basic medicineForagingZoologyContext (language use)Perceived riskEvolutionary game theoryBiologyPredator-prey interactions010603 evolutionary biology01 natural sciencesPredation03 medical and health sciencesbiology.animalPredatorEcology Evolution Behavior and SystematicsGiving-up densityY-mazebiology.organism_classification030104 developmental biologyOdorAnimal ecologyWeaselAnimal Science and ZoologyVoleOriginal ArticleBehavioral Ecology and Sociobiology
researchProduct

Bank vole alarm pheromone chemistry and effects in the field

2021

Chemical communication plays an important role in mammalian life history decisions. Animals send and receive information based on body odour secretions. Odour cues provide important social information on identity, kinship, sex, group membership or genetic quality. Recent findings show, that rodents alarm their conspecifics with danger-dependent body odours after encountering a predator. In this study, we aim to identify the chemistry of alarm pheromones (AP) in the bank vole, a common boreal rodent. Furthermore, the vole foraging efficiency under perceived fear was measured in a set of field experiments in large outdoor enclosures. During the analysis of bank vole odour by gas chromatograph…

0106 biological sciencesalarm pheromoneRodentpredator-prey interactionsmetsämyyräForagingZoology010603 evolutionary biology01 natural sciencesPheromoneshaju03 medical and health sciencesALARMmammalian body odournisäkkäätbiology.animalBody odourparasitic diseasespetoeläimetmedicineAnimalsbank volePredatorEcology Evolution Behavior and Systematics030304 developmental biologyferomonit0303 health sciencessaaliseläimetbiologyArvicolinaeBank voleBehavioral Ecology–Original ResearchfungiFearbiology.organism_classificationBank voleMammalian body odourAlarm pheromoneOdorantsbehavior and behavior mechanismsPheromoneVoleCuesmedicine.symptomPredator–prey interactions
researchProduct

Social information use about novel aposematic prey is not influenced by a predator’s previous experience with toxins

2019

Aposematism is an effective antipredator strategy. However, the initial evolution and maintenance of aposematism are paradoxical because conspicuous prey are vulnerable to attack by naive predators. Consequently, the evolution of aposematic signal mimicry is also difficult to explain. The cost of conspicuousness can be reduced if predators learn about novel aposematic prey by observing another predator's response to that same prey. On the other hand, observing positive foraging events might also inform predators about the presence of undefended mimics, accelerating predation on both mimics and their defended models. It is currently unknown, however, how personal and social information combi…

0106 biological sciencespredator-prey interactionstoksiinitZoologyAVOIDANCEAposematismBiology41 Environmental SciencesSTRATEGIC DECISIONSALTERNATIVE PREYFREQUENCY010603 evolutionary biology01 natural sciencesBATESIAN MIMICRYBasic Behavioral and Social SciencePredation03 medical and health sciencesDEFENDED PREYpetoeläimetBehavioral and Social ScienceCOLOR BIASEStoxin loadaposematismAVERSIONSSocial informationPredatorEcology Evolution Behavior and SystematicsEDUCATED PREDATORS030304 developmental biologysuojaväri0303 health sciencessaaliseläimetmimikry3103 EcologySocial learningBLACKBIRDSBatesian mimicrysosiaalinen oppiminengreat titssocial learning3109 Zoology1181 Ecology evolutionary biologyMimicrymimicry31 Biological Sciences
researchProduct

Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth

2020

AbstractWarning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four locations, among which the frequencies of hindwing warning coloration of aposematic Arctia plantaginis differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be strongest in monomorphic Scotland, and in contrast, lowest in polymorphic Finland, where different predators favour different male morphs. +FDS was also found in Geo…

0106 biological sciencespredatorspredator-prey interactionsFrequency-dependent selectionFREQUENCY-DEPENDENT SELECTIONDIVERSITYMoths01 natural sciencesMüllerian mimicrytäpläsiilikäsPredationmuuntelu (biologia)Arctia plantaginisPredatorFinland0303 health sciencesMonomorphismsaaliseläimetluonnonvalintaEcologywood tiger mothVARIABLE SELECTIONDIFFERENTIATIONPOISON FROG1181 Ecology evolutionary biologyMULLERIAN MIMICRYvaroitusväriColorZoologyAposematismBiology010603 evolutionary biologyBirds03 medical and health sciencesArctia plantaginisAposematismPARASEMIAcolour polymorphismpetoeläimetAnimalsaposematismfrequency‐dependent selectionEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologysignal variationsignal convergence010604 marine biology & hydrobiologypredator–prey interactionsEVOLUTIONSIGNALScotlandCommunity compositionPredatory Behavior
researchProduct

Why aren't warning signals everywhere? : On the prevalence of aposematism and mimicry in communities

2021

Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. He…

0106 biological sciencesvaroitusväri570predator-prey interactionsFREQUENCY-DEPENDENT SELECTIONFrequency-dependent selectionPopulationBatesian mimicryAposematismMacroevolutionModels Biological010603 evolutionary biology01 natural sciencesRISK-TAKINGGeneral Biochemistry Genetics and Molecular BiologyMüllerian mimicryPredationANTIPREDATOR DEFENSES03 medical and health sciencesPrevalenceAnimalsaposematismecological nicheeducationMullerian mimicryBODY-SIZE030304 developmental biology0303 health scienceseducation.field_of_studyMüllerian mimicryEcologyBiological Mimicrymimikrypredator–prey interactionseliöyhteisötBiological EvolutionBatesian mimicrysaalistusekologinen lokeroCORAL-SNAKE PATTERNCHEMICAL DEFENSEGeographyCOLOR PATTERNPredatory Behavior1181 Ecology evolutionary biologyMimicrySHIFTING BALANCEGeneral Agricultural and Biological Sciencescommunity ecology
researchProduct

Social learning within and across predator species reduces attacks on novel aposematic prey

2020

Abstract To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by observing the negative foraging experiences of conspecifics. However, predator communities are complex. While observing heterospecifics may increase learning opportunities, we know little about how social information use varies across predator species.Social transmission of avoidance among predators also has potential consequences for defended prey. Conspicuous aposematic prey are assumed to be an easy target for naïve predators, but this cost may be reduced if multipl…

0106 biological sciencesvaroitusväripredator-prey interactionsForagingZoologyAposematism010603 evolutionary biology01 natural scienceseläinten käyttäytyminenPredationpetoeläimetAnimalsaposematismPasseriformesSocial informationPredatorEcology Evolution Behavior and Systematicsheterospecific informationBehavioural EcologyParussaaliseläimetbiologyconspecific information010604 marine biology & hydrobiologyCyanistespredator–prey interactionsSocial learningbiology.organism_classificationsosiaalinen oppiminensocial learningPredatory Behavior1181 Ecology evolutionary biologyavoidance learningAnimal Science and ZoologyResearch Article
researchProduct

Response of bird predators for female wood tiger moth chemical defences

2018

Multiple behavioural responses of blue tit predators to the defence fluids of wood tiger moth (Arctia plantaginis) females that were either food deprived or fed ad libitum during development.

Aposematismdigestive oral and skin physiologyfungiChemical defenceLife-historysense organsPredator-prey interactionsResource allocationPredator defence
researchProduct

Integrity of predator assemblages controls the abundanceof the alien crab Percnon gibbesi

2016

Ecosystem resistance to species invasion is considered to be related to the abundance and diversity of native species (i.e. diversity-resistance hypothesis). In particular, the integrity of predator assemblages may enhance the control of prey populations through direct and indirect interactions (e.g.: different predation strategies by different predators, facilitative interactions among predators). Depletion of predators due to overfishing is therefore expected to enhance the abundance and ultimately the spread of alien prey species. Manipulative field experiments were performed to evaluate the effects of different abundance and diversity of predator assemblages on the invasion success of t…

Bioinvasions community invasibility predator-prey interaction
researchProduct

Response of an arctic predator guild to collapsing lemming cycles

2012

6 pages; International audience; Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Follo…

Food ChainCarnivoraGreenlandPopulation DynamicsPopulationModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyBirdsArcticDicrostonyx groenlandicusbiology.animal[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsArctic foxKeystone specieseducationPredatorResearch ArticlesGeneral Environmental Sciencepredator-prey interactioneducation.field_of_study[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyGeneral Immunology and MicrobiologybiologyArctic RegionsArvicolinaeEcologyReproductionCollared lemmingcyclic population dynamicsGeneral Medicinebiology.organism_classificationclimate changeArcticGuildPopulation cycleSeasonsGeneral Agricultural and Biological Sciences
researchProduct

Influence of fish aggregating devices (FADs) on anti-predator behaviour within experimental mesocosms

2015

Commercial fishers have used fish aggregating devices throughout the Mediterranean Sea for over 40 years. These devices attract numerous predatory and forage species in both coastal and offshore environments. This study examined the influence of fish aggregating devices on schooling and aggregating behaviour by small forage fish in quasi-natural mesocosms. Anti-predator behaviour was evaluated for juvenile Caranx crysos under a variety of treatment conditions. Results suggest that, in the absence of physical structure, C. crysos first respond to a predatory threat by forming a school. When a physical structure is present, however, C. crysos show an occasional tendency to aggregate near the …

Food ChainPopulationFisheriesPredationAquatic ScienceOceanographyRefugePerciformesPredationFood chainAggregationFisherieMediterranean SeaAnimalsCarangidaeEcosystemBehavioureducationPerciformeSocial BehaviorSchoolingSicilyPredator-prey interactionEcosystemSwimmingeducation.field_of_studybiologyEcologyFADAnimalMedicine (all)General MedicineCaranx crysosbiology.organism_classificationPollutionPerciformesFisheryPredatory BehaviorForage fishThreatened species
researchProduct